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The kinetics of bulk recombination between electrons and holes in semiconductors that have energetic
disorder is studied theoretically. The effect of energetic disorder in the medium is taken into account by using
a multiple trapping model in which charges repeat trapping into and detrapping from trap sites with different
trapping energies. We assume that recombination between an electron and a hole can occur only when at least
one of them is detrapped. The distribution of trap sites with different trapping energies E is assumed to be
exponential: ~exp(—E/E,). A general theory for the kinetics of bulk recombination between electrons and
holes is formulated which is valid for an arbitrary ratio of the recombination rate constant &, and the trapping
rate constant k. In the cases of k,=k, and k,<<k; the kinetics of bulk recombination is solved analytically. The
analytical result for the case of k,=k, agrees with the simulation results by Nelson [Phys. Rev. B 67, 155209
(2003)] for the same case. Our theory predicts that the number density of charges decays as 1 at long times,
where a=kpT/E, and T is the temperature. This result explains recent experimental observations on bulk

recombination between electrons and holes in organic solar cells.

DOLI: 10.1103/PhysRevB.82.085201

I. INTRODUCTION

Charge recombination in organic solar cells is a loss fac-
tor, whether it is geminate charge recombination or bulk
charge recombination.'~® Therefore it is important to know
how the rate of charge recombination is affected by various
physical factors involved in organic solar cells. Two major
factors that affect the rate of charge recombination is the
transport process of charges in semiconductors and the in-
trinsic recombination rate at the encounter of an electron and
a hole. The effects of the intrinsic recombination rate on
geminate and bulk recombination were recently analyzed in
Refs. 7 and 8.

Semiconductors used in organic solar cells usually have
energetic disorder. It is well known that in the presence of
energetic disorder the transport of charges becomes disper-
sive. There are two models for dispersive transport of
charges in semiconductors that have energetic disorder. One
is a continuous time random-walk (CTRW) model.? In this
model charges move between trap sites by nearest-neighbor
random walk. The kinetics of CTRW is characterized by a
waiting time distribution ¢(r) that is defined as the probabil-
ity that a random walker will leave the original site for a next
one between time ¢ and r+dt. For dispersive transport one
usually assumes a power-law waiting time distribution. The
other model is a multiple trapping (MT) model.'” In this
model a distribution of trap sites with different trapping en-
ergies is assumed. Charges are thermally detrapped into the
free state with a rate constant that depends on the trapping
energy exponentially. They stay in the free state for a while
and are then trapped again. The MT model was applied to
analyze transport process in amorphous semiconductors by
Rudenko and Arkhipov and many other people.'’'? Both
CTRW and MT models were applied to analyze charge re-
combination process in dye sensitized solar cells.!3"'® The
MT model and the CTRW model are mathematically
equivalent.'” However, in our understanding they are physi-
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cally different. In the MT model the dispersive waiting time
distribution arises from the distribution of trap depths while
in the CTRW model it arises from the distribution of tunnel-
ing distances. In Ref. 18 Nelson also distinguish between
them essentially in the same way.

Recently Durrant and other workers experimentally
studied the kinetics of bulk recombination between photoge-
nerated electrons and holes in organic solar cells. They found
that the decay of holes by bulk recombination with electrons
is fast at short times but decelerated with time and follows a
power law at long times. Nelson'® did Monte Carlo simula-
tions on the basis of the MT model to explain the results
obtained by Durrant.

In this paper we present a theory for the kinetics of bulk
recombination between electrons and holes in semiconduc-
tors that have energetic disorder. The model we use is similar
to the one used by Nelson. However, we solve it analytically.
On the basis of the obtained analytical results we analyze
recent experimental observations on bulk recombination be-
tween photogenerated electrons and holes in organic solar
cells.

19-21

II. THEORY
A. Kinetic model

Motion of holes is assumed to be described by the MT
model.'>!? In this model holes are trapped in trap sites with
different trapping energies and occasionally thermally de-
trapped to the free state. When they are detrapped into the
free state, they are subsequently either retrapped by vacant
trap sites or recombine with trapped electrons. We denote the
energy distribution of trap sites by g(E) and assume that it
decreases exponentially with increasing trapping energy,

g(E) = (1/Ep)exp(- E/E,), (1)

where E is a parameter characterizing the distribution. Al-
though Bissler?? assumes that the energy distribution of trap

©2010 The American Physical Society
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sites in polymers is Gaussian, we do not think that this is true
for all polymers. If the Gaussian distribution is assumed, it
seems impossible to explain the observed power-law kinetics
of bulk charge recombination. Nelson assumed the exponen-
tial distribution in Ref. 18. We followed her assumption. In
addition, our work is intended not only for charge recombi-
nation in polymers but also for that in amorphous semicon-
ductors. The rate constant of thermal detrapping depends on
the trapping energy E exponentially,

k(E) = vy exp(— ElkgT). (2)

We denote the number density of trap sites by N. Hereafter
we use dimensionless units 7=v,t and e=E/kgT for time and
energy. In dimensionless unit the trapping energy distribution
of trap sites and the detrapping rate constant are given by

g(e) = a exp(- ae), (3)

ki(€) =exp(=€), (4)

respectively, where a=kpT/E| is the ratio of thermal energy
to the parameter characterizing the trapping energy distribu-
tion of trap sites. This is a very important quantity in MT
model. If « is small compared with unity, E; is large com-
pared with thermal energy, which indicates that the trapping
energy is distributed up to energies much larger than thermal
energy. In this case it takes long times for holes trapped in
trap sites with such large trapping energies to be detrapped,
so recombination between holes and electrons becomes dis-
persive, namely, continues up to very long times.

B. Recombination kinetics in the case only holes are mobile

We assume that electrons are deeply trapped and immo-
bile. Let f(e,7) denote the number density of holes trapped
with trapping energy € at time 7. The kinetic equation for the
distribution f(e€, 7) is given by

af(G,T) =—e_ef(€,7')+k Ng(f)—f(E,T) -

- 9 d 9
ar TN+ U= gn(n ), €7 (e )de

(5)

where k, and k,. are the rate constants for trapping and recom-
bination with a trapped electron, respectively, of a hole in the
free state. In our model no extended state is assumed. What
we assume is just that after detrapping a hole will be either
trapped again by a trap with a rate proportional to the trap
density or recombine with an electron with a rate propor-
tional to the electron density. The first term on the right-hand
side corresponds to the decrease in the distribution due to
detrapping. The second term corresponds to the increase in
the distribution due to trapping. It can be derived in the fol-
lowing way. The factor [je™f(e, 7)de gives the number den-
sity of holes detrapped into the free state per unit time. They
are subsequently either retrapped into trap sites with trapping
energy € or recombine with trapped electrons. The probabil-
ity that a detrapped hole will be retrapped into a trap site
with trapping energy e is proportional to the trapping rate
constant k, and the number density of vacant trap sites with
trapping energy e. This number density is given by Ng(e)
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—f(e, 7), where Ng(e) is the total number density of trap sites
with trapping energy €. The probability that a detrapped hole
will recombine with a trapped electron is proportional to the
recombination rate constant k, and the number density of
trapped electrons. This number density is equal to the total
number density of holes and is given by [(e f(€,n)de.
Therefore, the probability that a detrapped hole will be
trapped into a trap site with trapping energy e is given by

k{Ng(e) - fle,7)]
k,J [Ng(e) - f(e,7)]de+ k,f f(e,7)de
0 0

_ k[Ng(9) - fle, 7]

=N + U= k()" (©)

where we have used [(g(e)de=1. n(7) is the time-dependent
number density of holes and given by

n(7) = focf(e, T)de. (7)
0

When holes are photogenerated, the probability that they are
initially trapped by trap sites with trapping energy € is pro-
portional to g(e). Therefore, if the initial density of photoge-
nerated electrons is ny, the initial condition on the distribu-
tion is given by

f(€,0) =nog(e). (8)
Integration of both sides of Eq. (5) over € yields

krn(T)f exp(— e)f(e, 7)de
0

J
gD =- KN+ (k—k)n(7) ©)

It is convenient to introduce the normalized distribution
function defined by

P(e,7)=f(e,7/n(7). (10)

By use of the above equation Eq. (5) is rewritten as
d
——p(e,7) = —exp(- &) P(e,7)
aT

k.Ng(e) + (k, = k)n(7) p(e, 7)
+
kN + (k,— k)n(7)

O(7), (11)

where
O(7) = f exp(— €)p(e, 1)de. (12)
0

On the other hand, by use of Eq. (12), Eq. (9) is expressed as
k[n(7) PP (7)

T KN+ (k= k(1) (13)

J

ﬁTn(T) B
One can calculate the decay kinetics of holes by solving Eqs.
(11)—(13). These equations can be solved analytically for the
cases of k.=k, and k,<<k;, as shown below. For a general case
they cannot be solved analytically, so we have solved them
numerically.
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1. Case of k.=k,

When the recombination rate constant k, is equal to the
trapping rate constant k,, Eqs. (11) and (13) reduce to

Lplen)=-ew(-9dlen +g(dP(n),  (14)

1 4 1
;EH(T)=_IT]¢(T). (15)

Equation (15) is a generalization of second-order reaction
kinetics and (1/N)®(7) represents a generalized rate con-
stant. It indicates that the rate of bulk recombination is pro-
portional to the number density of trapped electrons and that
of holes but the rate constant is time dependent. The time
dependence of the rate constant arises because the distribu-
tion of holes among trap sites with different trapping ener-
gies changes with time. If (1/N)®(7) is time independent,
Eq. (14) reduces to well-known normal second-order reac-
tion kinetics. The decay kinetics of holes is given by the
solution of Eq. (15),

1/n(7) = 1/ny=(1/N)R(7), (16)

where
R(T)=f O(7))dm,. (17)
0

Equation (16) is alternatively expressed as
n(7)/N = 1/[1/(ny/N) + R(7)]. (18)

Now our task is to calculate R(7). The Laplace transform of
R(7) is given by

R(s) = (1/5)d(s), (19)

where ®(s) is the Laplace transform of ®(7). d(s) can be
calculated in the following way. Laplace transformation of
Eq. (14) followed by rearrangement yields

Bles) =[1+D(s)]g(e)/[s +exp(- &)1, (20)

where @(e,s) is the Laplace transform of ¢(e, 7). Multipli-
cation of both sides by exp(—e) followed by integration over
€ yields

” g(e)exp(— €) Je

D(s) =1+ D(s)] . (21)
o S+exp(—e)
Solving the above equation for ®(s), we have
d(s) = 1/h(s) - 1, (22)
where
h(s) = s f G (23)
o s+exp(—e)

ﬁ(s) can be expressed in terms of the hypergeometric
function,??
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h(s) = ,F (1,01 + a;— 1/s). (24)
Finally Ii’(s) is obtained by substituting Eq. (22) in Eq. (19),
R(s) = (1/s)[1/h(s) - 1]. (25)

Inverse Laplace transformation of ﬁ(s) can be readily
evaluated numerically. Once R(7) is obtained, the decay ki-
netics of holes can be calculated from Eq. (16) or Eq. (18). In

the long-time limit which corresponds to s—0 h(s) is ap-
proximated as?

h(s) = s“ma cse(mra). (26)
So R(7) is obtained as
R(7)=b41", (27)

where b,=sin(ma)/[mal' (1+a)] and I'(x) is the gamma
function. Therefore, in the long-time limit Egs. (16) and (18)
reduce to

1/n(7) = 1/ng = (b,/N)7*, (28)

n(7)/N = 1/[1/(ny/N) + b, 7], (29)

respectively. Note that the recombination kinetics is de-
scribed in terms of a. At very long times n(7) is further
simplified to

n(7)/N=(1/b,)7“. (30)

Nelson suggested that n(7) decays as 7% at long times."?

However, her reasoning is valid only in the limit of k,/k,
— 0 as shown in Sec. II B 3. In normal second-order reaction
kinetics n(7) decays as 7! at long times. However, when « is
smaller than unity, Eq. (30) predicts the decay kinetics that is
more dispersive than 77!, The kinetics described by Eq. (30)
may be called fractional second-order reaction kinetics. Fig-
ure 1 shows the decay kinetics of holes by bulk recombina-
tion with electrons calculated by use of Eq. (18) together
with R(7) obtained by numerical inverse Laplace transforma-
tion of Eq. (25) in the case of k,=k, and a=0.4 for different
values of ny/N. Figure 2 shows the decay kinetics in the case
of k,=k, and ny/N=0.01 for different values of a.

The energy distribution of hole sites given by Eq. (3)
contains a contribution of zero trapping energy. In the simu-
lations of Nelson the following distribution was used by in-
cluding additional contribution of zero trapping energy:

g(e)=paexp(-ae) + (1 -p)dle). (31)

In order to compare our analytical theory with her simula-
tions we calculated the decay kinetics of holes for the distri-
bution given by Eq. (31). In this case Eq. (24) is modified as

h(s) = p,F (1a;1 + a;—1/s) + (1 -p)s/(s +1).  (32)

In Fig. 3 our analytical theory is compared with the simula-
tion results of Nelson. In Nelson’s plots time is expressed in
terms of an arbitrary unit. We assume that time in her plots is
proportional to our normalized time and the proportionality
coefficient was determined such that the best agreement be-
tween the two results is obtained. Agreement between our
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FIG. 1. n(7)/N against 7 in the case of k,=k, and @=0.4. Solid
lines represent Eq. (18) together with R(7) obtained by numerical
inverse Laplace transformation of Eq. (25). ny/N=0.5, 0.1, and 0.01
from top to bottom. The dashed line is obtained from Eq. (30).

analytical theory and the simulation results of Nelson is good
except for the case of ny/N=0.001. The reason for the sig-
nificant discrepancy in the case of ny/N=0.001 is not clear.
Some minor discrepancy in the cases of ny/ N=0.04 and 0.06
may be due to a slight difference between the models used in
the two approaches. In the model used by Nelson a detrapped
hole is allowed to move only to the nearest-neighbor sites
while we used a general MT model in which this restriction
is not imposed.
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FIG. 2. n(7)/N against 7 in the case of k,=k, and ny/N=0.01.
Solid lines represent Eq. (18) together with R(7) obtained by nu-
merical inverse Laplace transformation of Eq. (25). The dashed
lines are obtained from Eq. (30). «=0.4, 0.6, and 0.8 from top to
bottom.
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FIG. 3. (Color online) Hole density against time for different
initial number of holes. Solid lines represent Eq. (18) together with
R(7) obtained by numerical inverse Laplace transformation of Eq.
(25) with Eq. (32). p=0.01. @=0.4. ny/ N=0.064, 0.016, 0.004, and
0.001 from top to bottom. Symbols denote the results of Fig. 2(a) of
Ref. 11.

2. Case of k. <k,

The case in which the recombination rate constant is
much slower than the trapping rate constant is also practi-
cally important, especially in organic solar cells. The kinetic
equation for the number density n(7) of holes is given by Eq.
(9). If the intrinsic recombination rate constant k, is much
smaller than the trapping rate constant k,, the distribution of
holes among trap sites with different trapping energies is
equilibrated before recombination with trapped electrons ef-
fectively starts. In other words, the distribution f(e, 7) in Eq.
(9) is well approximated by a Fermi distribution with a
Fermi energy €p(n) which depends on the number density
n(7) of holes,

Ng(e)
exp{-[e—ex(n)]}+1°

flen) = (33)

By use of the above equation, the factor [jexp(—e€)f(e, 7)de
in Eq. (9) is calculated as

f“ exp[- ef(e,7)]de

0
_ J N exp( &) Ng(e)
0 exp{-[e—ex(n) ]} + 1

1
expiLe—ermB+1)°

€

=exp|- €(n)] J Ng(f)[ -
0
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=exp[— €x(n) (N —n). (34)
Substitution of the above equation in Eq. (9) yields
d n(N-n)
“n(1) = -k, exp[- ex())]————. (35
==k el ]S 69

If k, is much smaller than k, and if N—n is not smaller than
n, the above equation is approximated as

%n(r) ~ —k(n)n, (36)

where n is the number density of trapped electrons and the
apparent rate constant k(n) is given by

k(n) = (k,/k,)exp[— €x(n)]. (37)

The apparent rate constant k(n) depends on the number
density of holes through the Fermi energy. The relation be-
tween the Fermi energy and the number density of holes is

given by
f ) Ng(e) Jemn
o exp{-[e—e(n)]}+1 '

(38)

The left-hand side of the above equation can be expressed in
terms of the hypergeometric function?® and approximated as

N[ ma/sin(ma)lexp[— aex(n)]=n (39)
from which we obtain
exp[— aex(n)] = c (n/N)"* (40)

with ¢, =[sin(ma)/(ma)]"®. Substitution of the above equa-
tion in Eq. (37) yields

k(n) = (k,/k,)c (n/IN)". (41)

According to Eq. (41), the apparent rate constant is propor-
tional to the (1/a)th power of the number density of holes.
The strange dependence of the apparent rate constant on the
number density of holes arises because the detrapping rate
depends on the Fermi energy which in turn changes with the
number density of holes. The solution of Eq. (36) with Eq.
(41) is obtained as

Ve V= (¢ Ja) NV k k)T (42)
It is alternatively expressed as
n/N = (ng/N)[ 1 + (¢ /@) (nO/N) Y4k /k,)T]7%.  (43)
At long times n(7) is further simplified to
n/N =[(c/a)(kJk)] %7 . (44)

The recombination kinetics in this case also exhibits dis-
persive kinetics. Figure 4 shows the decay kinetics of holes
by bulk recombination with electrons calculated by use of
Eq. (43) in the case of k,/k,=0.1 and @=0.4 for different
values of ny/N. The decay kinetics calculated by solving
Egs. (11)—=(13) numerically is also included in the figure.
Agreement between Eq. (43) and the exact numerical results
is very good. Figure 5 shows the decay kinetics in the case of
k./k,=0.1 and ny/ N=0.01 for different values of a.
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FIG. 4. (Color online) n(7)/N against 7 in the case of k,/k,
=0.1 and @=0.4. ny/N=0.5, 0.1, and 0.01 from top to bottom. The
red dots show the exact numerical results. The solid lines represent
Eq. (43). The dashed line is obtained from Eq. (44).

3. Case of k,>k;

We have also calculated the decay kinetics of holes by
solving Egs. (11)—(13) numerically for an arbitrary ratio of k,
and k,. The exact solution can be obtained in the limit of k,
=0. In the limit, Eq. (5) simplifies into

f(e,7) _

P — e %f(e, 7).

(45)

Following Ref. 24, the decay kinetics of holes and the
asymptotic decay are given by

n(7) = ngay(a, 1)/ ™ (46)
g T T LI VA W B W T T T
1\ \
0.01 \

6 ]
5 i
4 0=0.4 4
3 i

pd 2k 4

=

Nt

c 0.001 | =
6F ]
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a4l p
3k i
2k
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T

FIG. 5. (Color online) n(7)/N against 7 in the case of k,/k,
=0.1 and ny/N=0.01. a=0.4, 0.6, and 0.8 from top to bottom. The
red dots show the exact numerical results. The solid lines represent
Eq. (43). The dashed line is obtained from Eq. (44).
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FIG. 6. n(7)/N against 7 in the case of k,/k,=10 and a=0.4.
ny/N=0.5, 0.1, 0.01, and 0.001 from top to bottom. The solid lines
represent the exact numerical results.

=nol'(a+ 1)/7%, (47)

where ¥(z,p)= [fe~'r"'dt for (Re z>0) is the incomplete
gamma function.?? Figure 6 shows the decay kinetics in the
case of k,/k,=10 and @=0.4 for different values of ny/N. In
Fig. 7, the decay kinetics in the case of @=0.4 and ny/N
=0.1 is shown for different values of k,/k,. As shown in the
Appendix, it is possible to derive the asymptotic decay for a
general value of k,/k,. The result is given by

n(r)  ma I'(1 + ak,/k,) 1
N sin(ma) I[1 + alk/k,— 1)] 7

(48)

It indicates that n(7) decays as 7 ¢ at long times for any
values of k,/k,. In Fig. 7, asymptotic power law with the
exponent « is observed in the cases of k,/k,=0.1 and 1 but
not yet for larger values of k,/k,.

C. Recombination Kinetics in the case both electrons
and holes are mobile

We extend the above treatments to the case in which both
electrons and holes are mobile. First we consider the case in
which the recombination rate constant k, is equal to the trap-
ping rate constant k,. In this case, if motions of electrons and
holes are both described by the MT model, Eq. (15) is ex-
tended to

(ma) == (UND®,(5) + (VN ) @l ()]

(49)

where v, and v, are the frequency factors of the hole and
electron detrapping rate constants, 7=v,,t, N; and N, are the
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FIG. 7. n(7)/N against 7 for @=0.4 and ny/N=0.1. k,./k,=0.1, 1,
10, and 100 from top to bottom. The solid lines represent the exact
numerical results. The short-dashed line represents the exact solu-
tion for k,=0 given by Eq. (46). The long-dashed lines represent Eq.
(48) with k,./k,=0.1 and 1.

number densities of hole and electron trap sites, and ®,(7)
and ®,(7) are ®(7) functions for holes and electrons, respec-
tively. The Laplace transforms of ®,(7) functions are given
by

d,(s) = 1/hy(s) - 1 (50)

with ﬁi(s)=sf§)°[g,»(e)/(s+e‘e)]de, where g;(€) is given by
gi(€)=a; exp(—a;€) and «; and «, are @ values for holes and
electrons, respectively. The decay kinetics of holes is de-
scribed by

1/’1(7')— 1/n0=(1/N1)R1(T)+(1/N2)R2(T), (51)

where

R1(7)=f Dy (7y)dry, (52)
0

(vl vg)) T
Ry(7) = f D, (7)dT;. (53)
0

At long times the decay kinetics is described by
Un(7) = 1/ng = (bat/Ny) Tt + (b oo/ N[ (v vy ) T ety
(54)
Next we consider the case in which the recombination
rate constant k, is much smaller than the trapping rate con-
stant k,. In this case, if motions of electrons and holes are
both described by the MT model, k(n) in Eq. (37) is extended
to
k(n) = (k,1/ky)expl— €p1(n)] + (k,o/kpp)expl— €p(n)],
(55)
where k,; and k,;, and k,, and k,, are the recombination and

trapping rate constants of holes and electrons, and €x(n) and
€m(n) are the Fermi energies of holes and electrons, respec-
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tively. The factors exp[—e€z;(n)] (i=1,2) are given by
expl— €x;(n)] = ci(n/N) V. (56)

Therefore, the rate equation is given by

d
ke [(ki/kyy)eqn(n/N)Y Y + (kpolk i) e gon(n/N,) V7).

(57)

The above equation can be solved numerically.

III. DISCUSSION

The model we used is essentially the same as the one used
by Nelson. However, there are two major differences be-
tween her work and ours. First she analyzed the model by
using Monte Carlo simulations while we analyzed it analyti-
cally. Second her conclusion is that the slow decay kinetics
of bulk charge recombination is due to the trap filling effect
while our conclusion is that the slow decay kinetics is due to
a delayed detrapping of trapped charges from a continuous
distribution of trap states. Similar explanations to ours were
proposed by Zaban et al. and Foertig et al.,>>® although in
our opinion they are less clear and less quantitative com-
pared with ours.

The physical model used by Adriaenssens and Bara-
novskii seems to be essentially the same as the one we
used.'” However, the quantities calculated in the two papers
are different. In our paper the sample is excited with a short
pulse. Just after the pulse the distribution of charges among
various states is given by Eq. (8). We calculate the decay of
charges as a function of time under this initial condition. On
the other hand, in their paper the sample is excited with a
continuous light and the steady state of the distribution of
charges among various states is established. Then the con-
tinuous light is turned off. Just after the turnoff of the light
the distribution of charges among various states is given by
the steady-state distribution. They calculate the decay of
charges as a function of time under this initial condition.
Furthermore, as they themselves admit, in their treatment
charge recombination process is taken into account only em-
pirically.

A detrapped hole will be either trapped again by a trap
with the rate constant k, or recombine with an electron with
the rate constant k,. These rate constants are important pa-
rameters. Since the magnitudes of these rate constants are not
known, we calculated the kinetics of bulk charge recombina-
tion for different ratios of the two rate constants. By compar-
ing the observed kinetics with the calculated ones, one can
get information on the magnitudes of the rate constants.

Several groups'®21?7:28 have observed that the kinetics of
bulk recombination between photogenerated electrons and
holes in organic solar cells follows a power law,

n(t) ~ e, (58)

where n(r) is the concentration of holes or electrons. Some
people!*2! argue that Eq. (58) indicates that the rate of re-
combination is proportional to the (1+1/)th order of reac-
tant concentrations

PHYSICAL REVIEW B 82, 085201 (2010)

—kl’l1+1/a. (59)

It is true that if the rate equation is described by Eq. (59), the
decay kinetics follows Eq. (58). However, the reverse is not
necessarily true. In Case 1 discussed in Sec. II B the recom-
bination rate is proportional to the second order of reactant
concentrations. Nevertheless the decay of reactants follows
Eq. (58). This is because the rate constant changes with time,
as already pointed out in Sec. II B 1. In Case 2 discussed in
Sec. II B the recombination rate is apparently proportional to
the (1+1/a)th order of reactant concentrations. This is be-
cause the recombination rate is proportional to the concen-
tration of trapped electrons [see Eq. (36)] and the apparent
rate constant k(n) is proportional to 1/ath power of the hole
concentration [see Eq. (41)].

As already mentioned, Durrant observed that the decay of
holes is fast at short times but decelerated with time.'%?!
This result was explained by the trap filling effect.!820-2!
Here we propose a different explanation. When photogener-
ated holes are initially trapped, they are trapped into traps
with different trapping energies, in accordance with Eq. (8).
If g(e) is described by an exponential distribution, most
holes are initially trapped into shallow traps because in this
distribution the fraction of shallow traps is much larger than
that of deep traps. Holes trapped in shallow traps are quickly
detrapped and are subsequently either retrapped or recom-
bine with electrons. When they are retrapped, some of them
are retrapped into deeper traps. Holes trapped in deeper traps
are more difficult to be detrapped, so remain in the same
traps. As a result, as time proceeds, the distribution of holes
among traps shifts toward larger trapping energy side. This
induces the decrease in the detrapping rate and therefore the
decrease in the recombination rate.

The effect of dispersive transport on reaction kinetics is
also treated by using a fractional diffusion equation. We stud-
ied the effect of subdiffusive motion of reactants on the ki-
netics of geminate recombination by using a fractional diffu-
sion equation.?>* Its extension to bulk recombination will be
published in a later publication.

APPENDIX: DERIVATION OF EQ. (48)

In order to find the asymptotic decay of the number den-
sity, it is convenient to introduce transformations, ¢(e,7)
= f(e, 7)/n*'* and w(7) = g(7)—v(7), where g(7) =n*"* and
v(7)=n""**/N. The time evolution equation for w(7) and
q(7) can be written as

diTw(T) = ]%fo P(e,7)de, (A1)
d k, =
d—TCI(T) = mfo d(e 1)de. (A2)

The Laplace transform of ¢(7) and v(7) satisfy the exact
relation,
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4(s) =[0(s)/h(s)] +[g(0) —=v(0) Vs, (A3)

where A(s) is given by Eq. (23) and is approximated as Eq.
(26). We assume that the asymptotic form of n(7) is given by

n(r) = AP, (A4)

where A and S are constants to be determined such that Eq.
(A4) satisfies Eq. (A3) asymptotically. By using Eq. (A4),
G(s) and 0(s) can be expressed as

PHYSICAL REVIEW B 82, 085201 (2010)

G(s) = AT (1 + Bk Jk,) /s PRk, (AS)

0(s) = A'ET[1 + Blkk, — 1)]/s"PEK=D - (A6)

By introducing Egs. (A5) and (A6) into Eq. (A3), Eq. (48) is
obtained.
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